Open study

is now brainly

With Brainly you can:

  • Get homework help from millions of students and moderators
  • Learn how to solve problems with step-by-step explanations
  • Share your knowledge and earn points by helping other students
  • Learn anywhere, anytime with the Brainly app!

A community for students.

Say that there is a rough surface. Prove that it is always possible to put a square table so that all four legs rest on the surface. (The table can be tilted)

See more answers at
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly


Get your free account and access expert answers to this and thousands of other questions

With a Diagram?
I'm sorry I don't get your question.
To prove it.

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

Any way possible. There isn't any restriction. That is all the things I got from the teacher.
I think this table problem may have to do with the postulate that through three noncollinear points there is exactly one plane. With the floor's being described as "rough," I assume that the fourth table leg may not lie in the same plane as the other three. In that scenario, someone sitting adjacent to that table leg can tilt the table so that it rests on the plane formed by the 3 noncollinear points. Or, place a wad of paper underneath the fourth leg.
I think the question asserts a perfect table, i.e. the 4 legs are the same length and are parallel.
Yep CeW. Thank you for clarifying that yes that's what I want.
What's being asked, in a mathematical sense, is to prove that for any function of 2 variables f(x,y), that f has the same value at the points: (x0, y0), (x0+d,y0), (x0,y0+d), (x0+d,y0+d), for at least one point (x0,y0) given a value of d. Here, x,y are the coordinates on a plane running through the mean height of the floor and z=f(x,y) is the height of the floor at that point (say, relative to its mean height). d is the square table side length.

Not the answer you are looking for?

Search for more explanations.

Ask your own question