sasogeek
  • sasogeek
is it okay to do this...? and did i get it correct anyway? the third term of an exponential sequence is 12 and the 9th term is 768. find the values of the common ratio. \[\large ar^2=12 \]\[\large ar^8=768\] \[\large \frac{ar^8}{ar^2}=\frac{768}{12}\] \[\large r^6=64 \] \[\large r=2 \ , \ r=-2\] I forgot the formulas and decided to go with this but i don't know if it is correct or even if it's acceptable... can anyone confirm for me please?
Mathematics
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions.

sasogeek
  • sasogeek
is it okay to do this...? and did i get it correct anyway? the third term of an exponential sequence is 12 and the 9th term is 768. find the values of the common ratio. \[\large ar^2=12 \]\[\large ar^8=768\] \[\large \frac{ar^8}{ar^2}=\frac{768}{12}\] \[\large r^6=64 \] \[\large r=2 \ , \ r=-2\] I forgot the formulas and decided to go with this but i don't know if it is correct or even if it's acceptable... can anyone confirm for me please?
Mathematics
katieb
  • katieb
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

sasogeek
  • sasogeek
truth is i've even forgotten if this is exactly how to do it lol. i literally have no memory of the classes i took for this topic
.Sam.
  • .Sam.
yeah you can do that
ParthKohli
  • ParthKohli
You are perfectly correct, math can be done in infinite ways :)

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

Mimi_x3
  • Mimi_x3
it looks like a geometric progression.. i dont know what's an exponential sequence.. http://en.wikipedia.org/wiki/Exponential_sheaf_sequence
.Sam.
  • .Sam.
\[a_3=12\] \[a_9=768\] ------------- \[ar^2=12\] \[ar^8=768\] \[\frac{12}{r^2}r^8=768\] \[r^6=64\] \[r= \pm 2\]
sasogeek
  • sasogeek
same thing :) different name
.Sam.
  • .Sam.
GP formula \[\Huge T_n=a_1r^{n-1}\]
sasogeek
  • sasogeek
thanks :)
.Sam.
  • .Sam.
np

Looking for something else?

Not the answer you are looking for? Search for more explanations.