anonymous
  • anonymous
How do I find the measure of the indicated angle, to the nearest tenth of a degree using sine law and cosine law?
Mathematics
jamiebookeater
  • jamiebookeater
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

anonymous
  • anonymous
|dw:1337042419972:dw|
anonymous
  • anonymous
Uh, what?
anonymous
  • anonymous
|dw:1337043771132:dw|

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
four degrees?
anonymous
  • anonymous
no, it's 104 degrees and the side length of BC is 45 m
Mertsj
  • Mertsj
|dw:1337046316750:dw|
Mertsj
  • Mertsj
Let's say that side AB is c and use the law of cosines.
anonymous
  • anonymous
|dw:1337046422125:dw| I found the side length of AC using cosine law: AC^2 = BC^2 + AB^2 - 2(BC)(AB)cosB = 45^2 + 20^2 - 2(45)(20)cos104 = 2860.459412 AC = 53.48 m
Mertsj
  • Mertsj
\[c^2=20^2+45^2-2(20)(45)\cos 104\]
anonymous
  • anonymous
and then I used cosine law again to find the side length of DC: DC^2 = BC^2 _ BD^2 -2(BC)(BD)cosB = 45^2 + 30^2 -2(45)(30)cos(104 degrees) = 3578.19 I used the triangle BCD
anonymous
  • anonymous
and now I am stuck..
Mertsj
  • Mertsj
|dw:1337046557115:dw|
Mertsj
  • Mertsj
Now find the meassure of angle ACB using the law of sines.
Mertsj
  • Mertsj
|dw:1337046713091:dw|
anonymous
  • anonymous
but what angle am I suppose to find for triangle ABC, when angle B=104 degrees? wait I am confused..
Mertsj
  • Mertsj
\[\frac{\sin 104}{53.48}=\frac{\sin ACB}{20}\]
Mertsj
  • Mertsj
Angle ACB = 21.3 degrees
anonymous
  • anonymous
how did you get 21.3?
anonymous
  • anonymous
and the angle of C has to be 7.3 degrees..
Mertsj
  • Mertsj
|dw:1337046878417:dw|
Mertsj
  • Mertsj
20(sin 104)/52.48 Then hit the inverse sin button.
anonymous
  • anonymous
how did you get 54.7 and 21.3? :O i'm so sorry
Mertsj
  • Mertsj
Look above. It tells you how to get the 21.3. Then use the fact that the sum of the angles of a triangle is 180 to get 54.7
anonymous
  • anonymous
ohh yup. But how am I going to find angle C? D:
Mertsj
  • Mertsj
But you want the angle theta so try this: \[(CD)^2=30^2+45^2-2(30)(45)\cos 104\]
Mertsj
  • Mertsj
|dw:1337047600966:dw|
anonymous
  • anonymous
i'm sorry but it just says, 'math processing error..'
Mertsj
  • Mertsj
|dw:1337047693118:dw|
Mertsj
  • Mertsj
Now use the law of sines to find angle DCB. Subtract 21.3 from DCB and that will be theta.
anonymous
  • anonymous
okay. I'm still kind of confused but thank you so much!
Mertsj
  • Mertsj
\[\frac{\sin 104}{59.8}=\frac{\sin DCB}{30}\]
Mertsj
  • Mertsj
What are you confused about?
anonymous
  • anonymous
Mertsj, how come the answer at the back fo my book is 7.8 degrees? o.o
anonymous
  • anonymous
ohh, never mind :$ THANK YOU!!

Looking for something else?

Not the answer you are looking for? Search for more explanations.