Australopithecus
  • Australopithecus
Apply the Comparison Test to determine if the integral converges or diverges. The Integral is \[\int\limits_{0}^{1} e^{2x}dx/x^{3} \] So far I have that \[\int\limits_{0}^{1} e^{2x}dx/x^{3} = \lim_{t \rightarrow 0^{+}} \int\limits_{t}^{1} e^{2x}dx/x^{3}\] Since \[1/0^{+} = \infty\] I assume this integral is Divergent Therefore, I use f(x) < g(x) where f(x) = e^(2x)/x^(3) \[e^{2x}/x^{3} \le 1/x^{3}\] Since \[\lim_{t \rightarrow 0^{+}} \int\limits_{t}^{1} dx/x^{3} \] is Divergent by the C.T. \[\int\limits_{0}^{1} e^{2x}dx/x^{3} \] is Divergent
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
Australopithecus
  • Australopithecus
did I do this correctly, I'm a little lost when trying to acquire the new function, g(x) and how to do it correctly from my understanding you simply remove the smallest element until it is simplified.
anonymous
  • anonymous
this looks right to me... as far as tips as to what to choose for g(x), just try to thing of a function that is easy to improperly integrate, and compare it to the original function on that interval
anonymous
  • anonymous
i.e. since \[\int_{0}^{1}\frac1{x^3}dx\]is easy to show as divergent, we choose it as g(x) and compare it to the original integrand like I said, looks good to me

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

Australopithecus
  • Australopithecus
Thanks :)

Looking for something else?

Not the answer you are looking for? Search for more explanations.