anonymous
  • anonymous
We were to asked to get the integral from 0 to infinity of (dx)/(sqrt(x))(x+1). I don't know if I should use the infinite intervals AND the discontinuous integrand or should I just go with one?
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
lgbasallote
  • lgbasallote
split them up first
lgbasallote
  • lgbasallote
1 to infity and 0 to 1 should work
anonymous
  • anonymous
So I would split them up first, then use an infinite interval from 1 to infinity and the discontinuous integrand from 0 to 1? :)

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

lgbasallote
  • lgbasallote
yep
anonymous
  • anonymous
Okay. Thanks so much for the help!!
PaxPolaris
  • PaxPolaris
\[\large \int\limits_{0}^{\infty}{dx \over \sqrt {x} \left( x+1 \right)}\]??
PaxPolaris
  • PaxPolaris
substitute \(\large \sqrt x = u\) and \(\large du =\Large \frac 12 \cdot\frac 1 {\sqrt x}\) \[\Large = 2\int\limits_0^\infty {1 \over u^2+1}du \] \[\Large = \left[ 2\tan^{-1}(u) \right]_0^\infty=2 \cdot \frac \pi 2-0 = \Huge\pi\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.