Open study

is now brainly

With Brainly you can:

  • Get homework help from millions of students and moderators
  • Learn how to solve problems with step-by-step explanations
  • Share your knowledge and earn points by helping other students
  • Learn anywhere, anytime with the Brainly app!

A community for students.

a 150kg ladder leans against a smooth wall,making an angle 30 degrees with the floor.The center of gravity of the ladder is one third the way up from the bottom. How large a horizontal force must the floor provide if the ladder is not to slip?

Physics
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Join Brainly to access

this expert answer

SIGN UP FOR FREE
Do you have a diagram? the floor provides horizontal force to what? the ladder or wall.. I guess you are talking about ladder.. But are you sure it is the center of gravity of wall whose position is given? I guess it should be of ladder..
yes the question modified....
guys i need help @experimentX @Vincent-Lyon.Fr

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

Are you sure the 30° angle is with the floor and not with the wall?
Since the ladder is in equilibrium, net torque about any point must be zero. Chose point A where ladder is touching the floor.|dw:1337890332208:dw| It will allow you to find the value of \(N_B\). Then write that net force is also zero. Finding horizontal component of \(\vec R_A\) is obvious.
the 30degrees is with the floor
Ok, now, have you tried applying the method I described earlier?
no idea @Vincent-Lyon.Fr
Do you know how to express the moment (torque) of a force about a certain point?
yep i do but get confused with the center of gravity constraint
What do you mean "constraint"?
the fact that the center of gravity of the ladder is one third the way up from the bottom.
Well, as you know where it is, you know its distance from A is l/3. That enables you to work out moment of weight about point A.
pls i need help its not clear..since the lenght of AB is not given..aw do we work out moment about point A
|dw:1340887287738:dw| 30cos50 X 150 = R X bc
@Vincent-Lyon.Fr u dig me?
according to me no matter where the center of gravity lies. horizontal force applied must be 150cos30' .
Here is the answer to your problem (see attached file):
1 Attachment
Thanks for the lecture @Vincent-Lyon.Fr

Not the answer you are looking for?

Search for more explanations.

Ask your own question