anonymous
  • anonymous
Integrate using partial fractions (x-1)/(x^2(x^2+1))dx
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
\[ \frac{x-1}{x^2 \left(x^2+1\right)}=\frac{A}{x^2}+\frac{B}{x}+\frac{C x+D}{x^2+1} \]
anonymous
  • anonymous
\[ A(x^2+1)+Bx(x^2+1)+(Cx+D)x^2=x-1 \]
anonymous
  • anonymous
Multiply bith sides by x^2 and make x =0, you get A= -1

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
Do you know how to take it from there, @Silenthill ?
anonymous
  • anonymous
yes thank you!
anonymous
  • anonymous
\[ \frac{x-1}{x^2 \left(x^2+1\right)}=\frac{A}{x^2}+\frac{B}{x}+\frac{C x+D}{x^2+1} \] Multilpy both sides by x^2 + 1 and make x = i\[ \frac {i-1} {-1} = Ci + D= -i+1\\ C=-1\\ D=1\\ \]
anonymous
  • anonymous
\[ \frac{x-1}{x^2 \left(x^2+1\right)}=\frac{A}{x^2}+\frac{B}{x}+\frac{C x+D}{x^2+1} \] Multiply both sides by x and let x goes to Infinity, you get 0 = B + C B=-C=1 Putting everything together, you get \[ \frac{x-1}{x^2 \left(x^2+1\right)}=\frac{1-x}{x^2+1}-\frac{1}{x^2}+\frac{1}{x} \]
anonymous
  • anonymous
thank you sir
anonymous
  • anonymous
yw
anonymous
  • anonymous
given question equals x/(x^2(x^2+1) -1/(x^2(x^2+1) first part can be done usin u=x^2 and then applying partial factor method whereas the second part can be seperated as1/(x^2)-1/(x^2+1) and then both the parts can be integrated easily

Looking for something else?

Not the answer you are looking for? Search for more explanations.