At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga.
Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus.
Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your **free** account and access **expert** answers to this and **thousands** of other questions.

See more answers at brainly.com

4 is the base of log.

\[\log _{4}32=x+2\]

To solve for x
Subtract 2 on both sides

So, log4 30=x?

Change it to the exponential form. Tell me what you see

I think my way is easier :p try this first ^

4^(x+2)=32
do you know how to get that?

No I don't :/

\[\log_432=x+2\]
-2 -2
\[\log_432-2=x\]

A good formula to remember
is the change of base formula
\[\frac{\ln(a)}{\ln(b)}=\log_b(a)\]

using my way we get
\[\frac{5}{2}-2=x\]

Remember since \[\log_4(32)=\frac{5}{2}\]

they=the teachers