Find the square roots...

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

Find the square roots...

Mathematics
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

|dw:1337828212155:dw|
24
No calculator? o.O

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

I memorized my square roots LOL
How do you know its 24? How do you get that? Yes I have a calcualtor. They want me to use the factoring method or the extracting method.
Haha nice :)
I just need to know the process
Oh, then you'll have to go crazy and do \(\sqrt{2*288}\) \(\sqrt{2*2*144}\) .... \(\sqrt{2*2*2*2*2*2*3*3} \)
Thank you.
\[\sqrt{576}=\sqrt{2\times2\times \times2\times2\times2\times2\times3\times3\times}=\sqrt{2^6\times3^2}=2^3\times3=24\]
Then \(\sqrt{2^6*3^2}=2^3*3=24\)
or "long division" works too
What I also want to know is how to do the square root of 2,916. They literally want me to write all that out. Where do I start?!
divvy it up into parts of "2" and the algorithm is a sort of long hand division
you mean just divide by 2?
5 4 _________ /29 16 25 ---- 10,4 /416 416 answer is 54
its an alogrithm based off of x^2 + 2xy + y^2
\(\large (50+x)^2=2916\)
:( stealing my words lol @amistre, you exist twice D: http://puu.sh/ws3B
im very existential lol
what times what gives you that
i think this times that would work
That actually is the problem i dont understand. How do you find what goes into such a big number I get the general idea of how to work these it is just that though. :/
make it smaller
\(\large \begin{align} (50+x)^2&=2916 \\ 50^2 + 2*50x + x^2 &= 2916 \\ 2500+100x+x^2&=2916 \\ x^2+100x-416&=0 \\ (x+4)(x-104)&=0 \\ x &=4~or104 \end{align} \)
My method looks quite horrible to look at :S
it needs more colors
Haha xD
So you always use 50 + x as an outline?
Depends, because the nearest number squared is 50(50^2 =2500)
50*50 = 2500 60*60 = 3600 use the one thats closer to 2900
Ok. I will have to go over this. Thank you all! :D
You are welcome :)

Not the answer you are looking for?

Search for more explanations.

Ask your own question