At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga.
Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus.
Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your **free** account and access **expert** answers to this and **thousands** of other questions.

See more answers at brainly.com

Join Brainly to access

this expert answer

SEE EXPERT ANSWER

To see the **expert** answer you'll need to create a **free** account at **Brainly**

|dw:1338094648240:dw|
prove this using laws of algebra of propositions.

plzzz help me.

|dw:1338095286775:dw|
Except this other all are right.

ya sure. thanx. :) can u help me to prove it if u dnt mind.

ha k. thanx. @jamesJ if u dnt can u plzzz help me with this question?

*mind

@asnaseer can u plzz help me vth this if u dnt mind.

@JamesJ u too. can u help me plzzz

So you want to prove this now using propositions?

ya.

I tried bt was unable to get t.

ha k.

ya that's it. sooo sorrry for the mistake.

ok, well you factor out ^ r from each of these terms and you have
( ~p^~q) v q v p ) ^ r

and ( ~p^~q) v q v p is always true. Hence the entire expression is equivalent to
TRUE ^ r = r

bt hw do v knw that ( ~p^~q) v q v p is always true?

because ~p^~q = ~(p v q) and hence
(~p^~q) v q v p = ~(p v q) v (p v q)

...and X v ~X is always true.

I get t nw. thanxxxxxxxx a lot.