plzzz help. prove (p→q)∧(r→q) = (pvr)→q

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

plzzz help. prove (p→q)∧(r→q) = (pvr)→q

Mathematics
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

First step: how do you write (p→q) as an logical expression that does not use the implication symbol → ?
|dw:1338105778405:dw|
~pvq or ~(p^~q), right So, rewrite now both sides of your expression using this rule and see what you get.

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

(p→q)∧(r→q) = (~p v q) ^ (~r v q) -- (*) and (pvr)→q = (~(pvr) v q) -- (**) So you need now just to show the two right-hand side expressions of (*) and (**) are equivalent.
Nw I get t. when I take vq out I will get (~p^~r) which is equal to (~(pvr)vq)
right
Thanxxxx a lot.

Not the answer you are looking for?

Search for more explanations.

Ask your own question