anonymous
  • anonymous
Fool's problem of the day, A not so easy geometry problem, A triangle is divided into four parts by straight lines from two of the corners. The area of three triangular parts are 8,5 and 10 sq units. What is the area of the remaining part? Good luck!
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
|dw:1338105988238:dw|
anonymous
  • anonymous
The diagram is not to scale.
anonymous
  • anonymous
does any of the line equal?

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
i'd take it as a no
anonymous
  • anonymous
answer is 22
anonymous
  • anonymous
Explain~
anonymous
  • anonymous
1 sec
anonymous
  • anonymous
http://www.pagalguy.com/forum/quantitative-questions-and-answers/71240-official-quant-thread-cat-2011-a-796.html doesn't have the solution right?
anonymous
  • anonymous
oo thanks.... i am seeing this now!! wat u trying to prove ??
anonymous
  • anonymous
I am interested to see your solution :)
anonymous
  • anonymous
i m drwing it
anonymous
  • anonymous
Take your time :)
anonymous
  • anonymous
here it is i.ve assumed the base to be BC and the upper vertex to be A p is d pt. dropped frm vertex b at AC q is d pt. dropped frm vertex c at AB nd O is d pt. whr BP and CQ intersect each othr join PQ nw in tri. bpc areaBOC is twice of areaCOP so BO must b twice of PO and area of POQ cmes out to be 4(areaBOQ is 8) in tri.AQC(PQ is still joind) areaAQP/areaCPQ=AO/CO nd in tri.ABC areaABP/areaBPC=AO/CO THEREFORE(let areaAQP is X) areaAQP/areaCPQ=areaABP/areaBPC on solving areaAQP=18 so area of the remaining part in abc= 18+4=22
anonymous
  • anonymous
That is a short version of the above solution: Join the third vertex to the intersection of the two lines. Let x and y be the areas of the two triangles formed, with y near 8 and x near 5 \[ x = \frac 1 2 (y+8)\\ y= \frac 8 {10} (x+5) \] Solve, you get x=10, y= 12 and x+y =22

Looking for something else?

Not the answer you are looking for? Search for more explanations.