anonymous
  • anonymous
f(x)' √x(2x+4)
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
Diyadiya
  • Diyadiya
\[\sqrt{x}(2x+4) \ \ or \ \ \sqrt{x(2x+4)}\]
anonymous
  • anonymous
first one
Diyadiya
  • Diyadiya
First can you try it out by yourself?

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

Diyadiya
  • Diyadiya
Use the product rule
anonymous
  • anonymous
hmm i got : \[2√x + 1/2√x(2x+4)\]
anonymous
  • anonymous
dunno how to go from there =/
Diyadiya
  • Diyadiya
Yes thats Right!!! :) Hope you understood :)
Diyadiya
  • Diyadiya
You can simplify it , 1second ..
Diyadiya
  • Diyadiya
\[2\sqrt{x}+ \frac{(2x+4)}{\sqrt{2x}}=\frac{2\sqrt{x}}{1}+ \frac{(2x+4)}{2\sqrt{x}}\]\[\frac{2\sqrt{x}\times 2\sqrt{x}}{1\times 2\sqrt{x}}+ \frac{(2x+4)}{2\sqrt{x}}=\frac{4x}{2\sqrt{x}}+ \frac{(2x+4)}{2\sqrt{x}}\]\[ \frac{(4x+2x+4)}{2\sqrt{x}}= \frac{(6x+4)}{2\sqrt{x}}\]Now factor out 2 from 6x+4 6x+4 =2(3x+2)\[ \frac{2(3x+2)}{2\sqrt{x}}= \frac{(3x+2)}{\sqrt{x}}\]
anonymous
  • anonymous
0_o
Diyadiya
  • Diyadiya
If you want you can rationalise \[ \frac{(3x+2) \times \sqrt{x}}{\sqrt{x} \times \sqrt{x}} = \frac{\sqrt{x}(3x+2)}{x}\]\[\frac{\sqrt{x}3x}{x}+\frac{2\sqrt{x}}{x}= 3\sqrt{x}+ \frac{ 2}{\sqrt{x}}\]
anonymous
  • anonymous
thx diya.. omg that was kinda easy -.-.. can't belive didn't get that -.-
Diyadiya
  • Diyadiya
lol Take your time :) Is there any step which you didn't follow ?
Diyadiya
  • Diyadiya
No problem ,You're Welcome :)
anonymous
  • anonymous
poke u later when im stuck.. kinda ok for now :p
Diyadiya
  • Diyadiya
Haha Alrighht!~

Looking for something else?

Not the answer you are looking for? Search for more explanations.