Solve the following equation for x. *Attached file

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

Solve the following equation for x. *Attached file

Mathematics
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

How far have you gotten before getting stuck?
I started by multiplying both sides by the (√4x-3) base. That's about it

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

\[2\sqrt{x}-(\sqrt{4x}-3)=\frac{1}{\sqrt{4x}-3}\]Note that\[\sqrt{4x}=2\sqrt{x}\]Therefore we can rewrite the equation\[\cancel{2\sqrt{x}}-\cancel{2\sqrt{x}}+3=\frac{1}{2\sqrt{x}-3}\]Multiply both sides by the denominator\[3(2\sqrt{x}-3)=1\]\[6\sqrt{x}=10\]\[\sqrt{x}=\frac{10}{6}=\frac53\]\[x=\frac{5^2}{3^2}=\frac{25}{9}\]
x=5232=259

Not the answer you are looking for?

Search for more explanations.

Ask your own question