Open study

is now brainly

With Brainly you can:

  • Get homework help from millions of students and moderators
  • Learn how to solve problems with step-by-step explanations
  • Share your knowledge and earn points by helping other students
  • Learn anywhere, anytime with the Brainly app!

A community for students.

In a survey of 500 people, 200 indicated that they would be buying a major appliance within the next month. 150 indicated that they would buy a car, and 25 said that they would purchase both a major appliance and a car. How many will purchase neither. How many will purchase only a car?

Physics
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Join Brainly to access

this expert answer

SIGN UP FOR FREE
Let's define, A = people who buy major appliance only B = people who buy car only C = people who buy both car and major appliance = 25 D = people who buy neither so we get, A + B + C + D = 500 --> A + B + D = 475 (200 - A) + (150 - B) = C --> A + B = 325 solving both equation above D = 150
I got a different answer. I can't figure out from where did you get the second equation: \[(200 - A) + (150 - B) = C\]
because the 200 people is the total people who will buy home appliance, that is people who buy car only and people who buy home appliance plus car, because the 150 people is the total people who will buy car, that is people who buy car only and people who buy car plus home appliance.

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

I think that 200 - A represents a part of the people who bought A.
no, thats not what i mean. A = people who buy home appliance only then 200-A means people who buy home appliance plus car.
Then I think it's wrong. But I can't explain it well =(
I was trying to solve it using sets theory, but your approach using systems of equations looks very good. This is what I did:
Let: \(n(\Omega)\): Total number of people \(n(A)\): number of people who will buy a major appliance \(n(B)\): number of people who will buy a car \(n(C)\): number of people that will buy both.
so \(n(A)\)=200 \(n(B)\) = 150 \(n(C)=n(A\cap B)\) = 25
The number of people who bought only A is given by: \(n(A\setminus B)=n(A) - n(A\cap B)\) So: \(n(A\setminus B)= 200 - 25=175\) and the number of people who bought only B is given by: \(n(B\setminus A) = n(B)-n(A\cap B)\) or, \(n(B\setminus A) = 150 - 25=125\)
Hmm, I think I misunderstand the problem above. After looking again, I found out that my answer was wrong. The correct one is your answers.
and the number of people who bought neither is given by \(n(A\cup B)^C=n(\Omega)-n(A\cup B) \)
yeah, but you give me insight on another way of solving it!. Thank you much. I will work on that approach.
And I apologize, I think I missplace the question. I haven't noticed that this is the Physics group =P
150 - 25 = 125 will purchase only a car 200 - 25 = 175 will purchase only a major appliance 25 will purchase both a car and a major appliance. Total number of people making a purchase = 125 + 175 + 25 = 325 Number of people purchasing neither = 500 - 325 = 175

Not the answer you are looking for?

Search for more explanations.

Ask your own question