anonymous
  • anonymous
Can a single vector with 4 terms span R^4?
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
UnkleRhaukus
  • UnkleRhaukus
you need a minimum of four vectors to span \( \mathcal{R} ^4\)
amistre64
  • amistre64
depends on your definition of span
UnkleRhaukus
  • UnkleRhaukus
oh,

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

amistre64
  • amistre64
can a single vector hit all of the points in R^4? No can a single vector stretch thru R^4? yes
UnkleRhaukus
  • UnkleRhaukus
a single vector of \(\mathbb{R}^4\) is just a point, it has no span
anonymous
  • anonymous
so a vector with 4 terms is in R^4 right?
UnkleRhaukus
  • UnkleRhaukus
yeap, even if some of them are zero
anonymous
  • anonymous
gotcha ty
UnkleRhaukus
  • UnkleRhaukus
To span \(\mathbb{R}^4\) you will need four linearly independent vectors in \(\mathbb{R}^4\) such as \[\left\{ \left( \begin{array} \\1\\0\\0\\0\end{array}\right), \left(\begin{array}\\0\\1\\0\\0\end{array}\right),\left(\begin{array}\\0\\0\\1\\0\end{array}\right),\left(\begin{array}\\0\\0\\0\\1\end{array}\right)\right\}\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.