Open study

is now brainly

With Brainly you can:

  • Get homework help from millions of students and moderators
  • Learn how to solve problems with step-by-step explanations
  • Share your knowledge and earn points by helping other students
  • Learn anywhere, anytime with the Brainly app!

A community for students.

Plzz help. Typical bedroom contains 2500 moles of air. Find the change in internal energy of the air, when it is cooled from 23.9 degree C to 11.6 degree C at a constant pressure of 1atm. Treat this air as an ideal gas with gamma = 1.4.

Physics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Join Brainly to access

this expert answer

SEE EXPERT ANSWER

To see the expert answer you'll need to create a free account at Brainly

do you have a formula yet/
|dw:1338339090808:dw|
|dw:1338339348203:dw|

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

and the question asks for \(\frac{\text d u}{\text dt}\)
jst du.
oh ok.
cant say id even know how to begin with this one :/ srry
it's ok. Thanxxx a lot anyways.
it is really annoying because it seams like a simple question, and i know i have done an almost identical question about a year ago, im gonna look through my old books
ha k.
thanxxx
The pressure is constant \(p\) is pressure; \(n=\frac NV\) is the moles per unit volume ; \(k_b\)the Boltzmann constant; \(T\) is the Temperature in Kelvin; \(u=\frac UV\) is the kinetic energy per unit volume \[p=nk_bT\] \[p=\frac23u\] \(U=\frac 32nk_BT\) \(\Delta U=\frac 32nk_B\Delta T\)
Thanxxxxx a lottt
there are too many formulas in thermodynamics i found this subject very difficult
:)
Bt y hav they given gamma @unklerhaukus.
i cant see how to use gamma for this question, the method of cooling has not be specified
|dw:1338353654846:dw| When I solve using this and the above formula i posted I end up with a different answer.
what were the two answers you got?
one is 635,215.625 and the other is 2.30*10^-20
and the units that belong to those numbers are ?
first one is Joules bt the second is the answer I found using ur formula. I am confused with its units.
second answer has to be 2.55*10^-22
in physics , units are most important , did you stick to SI units , and remember to convert temperatures to Kelvin
ya I did.
Let's first make a couple of assumptions to better define the problem. 1) Closed system. 2) Constant specific heats 3) Ideal gas 4) Reversible We also know that the process happens at constant pressure. With Assumptions 1, 2, and 3, we can say that\[dU = m C_v dT\]However, we can look up the specific heat on a molar basis. The expression now becomes\[dU [ kJ] = n [mole] \cdot \bar C_v \left [ kJ \over {mol \cdot K } \right ] \cdot dT [K ~ or~ C]\] (Note that bar over the \(C_v\) indicates molar units.) But, because the process happens at constant pressure and not constant volume, we cannot use the constant volume specific heat value (\(C_v\)). Let's recall that change in enthalpy can be expressed as (under conditions specified by Assumptions 1, 2, and 3) \[dH = m C_p dT = n \bar C_p dT\]Let's also recall that enthalpy can be expressed in terms of internal energy as\[H = U + pV\]Differentiating, we obtain \[dH = dU + dp \cdot V + p \cdot dV\]Since pressure is constant, \(dp \cdot V = 0\)\[dH = dU + p \cdot dV\]Therefore, \[dU = n \bar C_p dT - p \cdot dV\]From Assumption 3, we can express the change in volume as\[dV = {nR(dT) \over p}\]\[\therefore dU = n \bar C_p (dT) - {nR(dT) \over p}\]With Assumption 2 and 3 and the fact that pressure and temperature are state quantities, we can expression the differential as\[\Delta U = n \bar C_p (\Delta T) - {n R (\Delta T) \over p}\] We don't know \(C_p\) however, but we know gamma and the gas constant. Let's work a couple of relations to get \(C_p\) in terms of gamma and R. It can be shown that\[C_p = {\gamma n R \over \gamma - 1}\] We obtain the following final expression\[\Delta U = n \left [ \gamma n R \over \gamma -1 \right] \Delta T - {n R \Delta T \over p}\] Be sure the units on R matches the units on n and p.
are you sure the pressure is constant, not the volume @eashmore?
The problem statement explicitly states "at a constant pressure of 1 atm." Counter intuitive? Sure, but I'll stick to the problem statement.
ok that isa good point, but i still dont see how come you can assume reverseable cooling
Thanxxxx a lottt.

Not the answer you are looking for?

Search for more explanations.

Ask your own question