Looking for something else?

Not the answer you are looking for? Search for more explanations.

## More answers

Looking for something else?

Not the answer you are looking for? Search for more explanations.

- anonymous

Q7:
polygon ABCD showed in figure is squared and

Mathematics
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga.
Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus.
Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your **free** account and access **expert** answers to this

and **thousands** of other questions.

Get your **free** account and access **expert** answers to this and **thousands** of other questions

- anonymous

Q7:
polygon ABCD showed in figure is squared and

Mathematics
- jamiebookeater

See more answers at brainly.com

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your **free** account and access **expert** answers to this

and **thousands** of other questions

- anonymous

|dw:1338409580873:dw|

- phi

|dw:1338413561449:dw|
construct equilateral triangle external to the square. Sides AE= AD (sides of square)

- phi

|dw:1338413811564:dw|
triangle AEP congruent to triangle ADP by side AP, angle 75, side AD = side AE
triangle AEP is isosceles (75 - 30 - 75) so triangle ABD is also, and AD= DP
by similar argument using triangles BEP and BCP, side CP = side BC.
As CD=AD=BC (sides of a square), all three sides PD,CD and CP are equal and triangle CDP is equilateral

Looking for something else?

Not the answer you are looking for? Search for more explanations.

- anonymous

suppose that the figure in bottom occurs?|dw:1338509358894:dw|

- phi

Triangle ABE is equilateral by construction. You can always construct it. triangle APB is isosceles, so points E and P will lie on the perpendicular bisector.

- anonymous

Ok but you suppose that AD=AE so you can not assume these assumptions together ?

- phi

You construct equilateral triangle AEB. One side of it is AB. AB = AD (sides of a square).
As all 3 sides are equal we know AE= AB, and
therefore AE= AD.
triangle APB is isosceles (given)
triangle AEB is equilateral (by construction)
therefore, we can show the perpendicular dropped from E to AB will bisect AB.
Similarly, the perpendicular dropped from P to AB will bisect AB. therefore PE is the perpendicular bisector of AB

- phi

we can show the perpendicular dropped from E to AB will bisect AB.
Given isosceles triangle ABE with angle A= angle B
|dw:1338512498308:dw|
because 2 of the three angles are equal, the 3rd angle must be equal
so by angle, side (the perpendicular), angle (the right angle), the 2 triangles are congruent, and so the perpendicular is also the bisector.

- anonymous

I think you did not get my question.
Please look at the picture and explain how you suppose ED is one straight line?
If you assume two sides has the same length you can not suppose ED is a line which Perpendicular in AB.

- anonymous

|dw:1338514726898:dw|

- phi

I got your question. there is no gap.

- anonymous

also like this we do not know!|dw:1338515217497:dw|

- anonymous

|dw:1338515256068:dw|

Looking for something else?

Not the answer you are looking for? Search for more explanations.