Open study

is now brainly

With Brainly you can:

  • Get homework help from millions of students and moderators
  • Learn how to solve problems with step-by-step explanations
  • Share your knowledge and earn points by helping other students
  • Learn anywhere, anytime with the Brainly app!

A community for students.

how do i simplify thisl..

Mathematics
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Join Brainly to access

this expert answer

SEE EXPERT ANSWER

To see the expert answer you'll need to create a free account at Brainly

\[(x-2)(\frac{100}{x} - 5)\]
\[\begin{align} \text{F.O.I.L. = First Outside Inside Last}\\ \hline \\ &(ax+b)(cx+d)\\ \ \\ \text{First:}&(\color{blue}{ax}+b)(\color{blue}{cx}+d)\to \color{blue}{ax}\cdot\color{blue}{cx}=\color{blue}{acx^2}\\ \text{Outside:}&(\color{green}{ax}+b)(cx+\color{green}{d})\to \color{green}{ax}\cdot\color{green}{d}=\color{green}{adx}\\ \text{Inside:}&(ax+\color{red}{b})(\color{red}{cx}+d)\to \color{red}{b}\cdot\color{red}{cx}=\color{red}{bcx}\\ \text{Last:}&(ax+\color{orange}{b})(cx+\color{orange}{d})\to \color{orange}{b}\cdot\color{orange}{d}=\color{orange}{bd}\\ \hline \\ (ax+b)(cx+d)&=\color{blue}{acx^2}+\color{green}{adx}+\color{red}{bcx}+\color{orange}{bd} \end{align}\] Only difference from a typical FOIL is that you have a 1/x term, but you can still use the same exact method.

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

@zaphod , please proceed as instructed by @nbouscal , u will get the answer. Its easy.
wow, i like this method :D, thanks alot @nbouscal
\(\begin{align} \text{F.O.I.L. = First Outside Inside Last}\\ \hline \\ &(ax+b)(cx+d)\\ \ \\ \text{First:}&(\color{blue}{ax}+b)(\color{blue}{cx}+d)\to \color{blue}{ax}\cdot\color{blue}{cx}=\color{blue}{acx^2}\\ \text{Outside:}&(\color{green}{ax}+b)(cx+\color{green}{d})\to \color{green}{ax}\cdot\color{green}{d}=\color{green}{adx}\\ \text{Inside:}&(ax+\color{red}{b})(\color{red}{cx}+d)\to \color{red}{b}\cdot\color{red}{cx}=\color{red}{bcx}\\ \text{Last:}&(ax+\color{orange}{b})(cx+\color{orange}{d})\to \color{orange}{b}\cdot\color{orange}{d}=\color{orange}{bd}\\ \hline \\ (ax+b)(cx+d)&=\color{blue}{acx^2}+\color{green}{adx}+\color{red}{bcx}+\color{orange}{bd} \end{align}\)
Lol nathan you copied me
what about this method (ax+b)(cx+d) cx(ax+b)+d(ax+b)--------> very simple :)
Of course...nathan uses foil..I use the method you stated
oh any other methods? easier than this
That's it....all of the methods have the same intuition
They're the same method really, just different ways of looking at it. I actually prefer to use the long multiplication method, because it works for multiplying trinomials and polynomials as well.
Yeah, that's what I was meaning
Example:\[ \begin{align} &&&x+2\\ &\times&&\color{red}{x}+\color{blue}{1}\\ \hline \\ &&&\color{blue}{x+2}\\ &+&\color{red}{x^2+2}&\color{red}{x}\\ \hline \\ &&x^2+3&x+2 \end{align} \]Just like long multiplying numbers, but with polynomials instead. That's my preferred method :)

Not the answer you are looking for?

Search for more explanations.

Ask your own question