Okay, now because we are given that the length of ABCD is 1/4 the length of PQRS, all we need to do, is find the actual length of side AB and multiply that by 4, to get the length of PQ. Now, in order to find the length of side AB, we need to use the distance formula, which is: \[d = \sqrt{(x-x)^2 + (y-y)^2}\] We need to take the coordinates of A and B, and insert them into the formula: \[d = \sqrt{(8-4)^2 + (6-6)^2}\] Then, we need to solve for "d". First, we subtract 4 from 8, to give: 4, then we square 4, which gives us: 16. Next, we need to subtract 6 from 6, to give: 0, then we square 0, which gives us: 0. Then, we need to add 16 to 0, to get: 16. Finally we take the square root of 16, which leaves us with a final answer of: d = 4 Then for the next step . . . . .