anonymous
  • anonymous
Use properties of logarithms to expand the loarithmic expressions as much as possile. log_4 7-2 1) 7log4 4 2) 4log4 7 3) -4log4 7 4) -16log 7
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
saifoo.khan
  • saifoo.khan
7-2?
anonymous
  • anonymous
7-^2
saifoo.khan
  • saifoo.khan
\[\log_4 7^{-2} \to \log_4 (\frac{1}{49})\to \frac{\log \frac{1}{49}}{\log 4}\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

saifoo.khan
  • saifoo.khan
are the options you wrote correct? @Audrae_World
anonymous
  • anonymous
Yes, that's what my book says
anonymous
  • anonymous
Isn't it \[\log_{4} 1 - \log_{4} 7^{2}\]
anonymous
  • anonymous
Its expand not solve @saifoo.khan
saifoo.khan
  • saifoo.khan
Yes! im stuck. :/
anonymous
  • anonymous
@Audrae_World : Is it \[\log_{4} 7^2\]
anonymous
  • anonymous
That's the closest I've seen so far, but the one of answer choices says: 4log_4 7^2
anonymous
  • anonymous
Are you sure the problem is \[\log_{4} 7^{-2}\] ?
anonymous
  • anonymous
Yes
anonymous
  • anonymous
Oh. I got it. Hold on.
anonymous
  • anonymous
\[\log_{4}7^{-2} = -2(\log_{4}7) = -2(\log_{7}7/\log_{7}4) = -2(1/\log_{7}2^{2})\] \[-2(\log_{7}2^{-2}) = -2 * -2(\log_{7}2) = 4\log_{7}2\]
anonymous
  • anonymous
Wait. Darn it...
anonymous
  • anonymous
LOL @Calcmathlete :whats that !??
anonymous
  • anonymous
lol. I got so close!!! But then I realized that it isn't one of the answers...

Looking for something else?

Not the answer you are looking for? Search for more explanations.