The coordinates of rectangle ABCD are A(-3, 6), B(-8, 6), C(-8, 2), D(-3, 2). What are the coordinates of the point of intersection of the diagonals of the rectangle after the rectangle is reflected across the y-axis?
Answer
(-5.5, -4)
(5.5, 4)
(2.5, 4)
(-5.5, -2)
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga.
Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus.
Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
The coordinates of rectangle ABCD are A(-3, 6), B(-8, 6), C(-8, 2), D(-3, 2). What are the coordinates of the point of intersection of the diagonals of the rectangle after the rectangle is reflected across the y-axis?
Answer
(-5.5, -4)
(5.5, 4)
(2.5, 4)
(-5.5, -2)
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga.
Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus.
Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
It might be wrong....
|dw:1338856590145:dw|
The point of intersection of the rectangle should be the ''centre'' of the rectangle..
so, the x-coordinate should share the same x-coordinate with the mid-point of AB
the y-coordinate should share the same y-coordinate with the mid-point of BC
x-coordinate of the intersection point = [(-3)+{-8)]/2 = -5.5
y-coordinate of the intersection point = (6+2)/2 = 4
Since the rectangle is reflection along y-axis, the x-coordinate will become positive
So, the point is (5.5, 4)
When you reflect over the x axis, it negates the y coordinate.
A'(-8,-6); B' (-2,-6); C' (-2,-3) ; D'(-8,-3)
The diagonals bisect each other since it is a rectangle. They intersect at their midpoints.
The midpoint of A'C' =( (-8+-2)/2, (-6+-3)/2 )= (-5, -4.5)
Hoping this helps!