anonymous
  • anonymous
Expand: (2s-3t)^5
Mathematics
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

saifoo.khan
  • saifoo.khan
binomial?
anonymous
  • anonymous
Yea.
saifoo.khan
  • saifoo.khan
dont u know the formula ?

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
Wasnt given one.
saifoo.khan
  • saifoo.khan
FAIL.
saifoo.khan
  • saifoo.khan
http://mathsteaching.files.wordpress.com/2008/05/binomial-expansion-formula.jpg First sentence.
anonymous
  • anonymous
How am I a fail? I wasnt given one or taught one..
saifoo.khan
  • saifoo.khan
Then how they taught you Binomial expansion?
anonymous
  • anonymous
32 s^5-240 s^4 t+720 s^3 t^2-1080 s^2 t^3+810 s t^4-243 t^5
anonymous
  • anonymous
No, teacher gave me a page of them to do.
anonymous
  • anonymous
Thank you, Eyad.
anonymous
  • anonymous
yw :)
saifoo.khan
  • saifoo.khan
Direct answers! D:
anonymous
  • anonymous
Under your explanation and your rule :P
anonymous
  • anonymous
You werent helping much, lol. Just telling me that I was a fail. @saifoo.khan Yea, teamwork :)@Eyad
.Sam.
  • .Sam.
(2s-3t)^5 Just expand \[^5C_0(-3t)^0(2s)^5=\] \[^5C_1(-3t)^1(2s)^4=\] \[^5C_2(-3t)^2(2s)^3=\] \[^5C_3(-3t)^3(2s)^2=\] \[^5C_4(-3t)^4(2s)^1=\] \[^5C_5(-3t)^5(2s)^0=\]
anonymous
  • anonymous
And that will be my written answer? Or will I have to expand it further?
.Sam.
  • .Sam.
(p+q)^5 no, you have to use the formula \[^nC_r(q)^r(p)^{n-r}\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.