Got Homework?
Connect with other students for help. It's a free community.
Here's the question you clicked on:
 0 viewing
Discrete Math: Determine whether the statement "for all x, P(x) is true if and only if Q(x) is true" and the statement "for all x, P(x) is true if and only if for all x, Q(x) is true" are logically equivalent. (Intuitively, I'd say they are logically equivalent, but I could always be wrong. Please help, anyone? I could also use help on formally proving an answer)
 one year ago
 one year ago
Discrete Math: Determine whether the statement "for all x, P(x) is true if and only if Q(x) is true" and the statement "for all x, P(x) is true if and only if for all x, Q(x) is true" are logically equivalent. (Intuitively, I'd say they are logically equivalent, but I could always be wrong. Please help, anyone? I could also use help on formally proving an answer)
 one year ago
 one year ago

This Question is Closed

TuringTestBest ResponseYou've already chosen the best response.0
The only difference between the two statements is that the second repeats the "for all x" part, but since the first statement implies that we are talking about the same x throughout the expression, that just seems a redundancy, so I agree with you. Can't say I'm positive either though.
 one year ago

windsylphBest ResponseYou've already chosen the best response.0
Yeah, i asked this question here because a friend told me that they aren't, according to cramster. Of course cramster isn't always right, but it still gave me doubts anyway.
 one year ago

joemath314159Best ResponseYou've already chosen the best response.2
I dont believe they are the same. In the first statement, to check if P(x) is true, you only need to check Q(x). If we were dealing with numbers, this is saying if you wanted to check P(1), you only need to check Q(1) (or vice versa). The second statement is saying something different though. If saying if you want to check if P(x) is true, then check if Q(x) is true for all x. Again with number examples, this is like saying to check if P(1) is true, you have to check Q(1), Q(2), Q(3), etc etc.
 one year ago

windsylphBest ResponseYou've already chosen the best response.0
Hm, thank you very much. After thinking about what you said, I came up with a concrete counterexample. Indeed, consider this case: let the domain of x be the set of all integers, let P(x) be the statement that "x>0", and let Q(x) be the statement "x<0." Then the statement "for all x, P(x) is true if and only if Q(x) is true" is clearly false, since an integer can't be greater than or less than 0 at the same time. However, the statement "for all x, P(x) is true if and only if for all x, Q(x) is also true" evaluates to a true statement because both P(x) and Q(x) are false (the iff logical connective requires both logic operands to be both true or both false to make the statement true). Thus, the two statements are not logically equivalent.
 one year ago
See more questions >>>
Your question is ready. Sign up for free to start getting answers.
spraguer
(Moderator)
5
→ View Detailed Profile
is replying to Can someone tell me what button the professor is hitting...
23
 Teamwork 19 Teammate
 Problem Solving 19 Hero
 Engagement 19 Mad Hatter
 You have blocked this person.
 ✔ You're a fan Checking fan status...
Thanks for being so helpful in mathematics. If you are getting quality help, make sure you spread the word about OpenStudy.