PhoenixFire
  • PhoenixFire
find dy/dx of y=(sin(x))^x
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
lgbasallote
  • lgbasallote
ln both sides \[\ln y = x \ln (\sin x)\] do implicit differentiation yada yada...got it?
PhoenixFire
  • PhoenixFire
Yup. Makes sense. thanks.
lgbasallote
  • lgbasallote
so can you do it from here?

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

PhoenixFire
  • PhoenixFire
Yes I can... forgot about implicit. Should be good.
lgbasallote
  • lgbasallote
great :D
anonymous
  • anonymous
Phoenix, do you know why we use log differentiation here?
anonymous
  • anonymous
Phoenix, do you know why we use log differentiation here?
anonymous
  • anonymous
This would be helpful for the future. \[d/dx (a^b) = 0\] because a and b are just constants. \[d/dx (x^n) = nx^{n-1}\] \[d/dx (f(x)^{g(x)}= \log differentiation\] because it's a function raised to a function.
anonymous
  • anonymous
n is a constant in the second case.
PhoenixFire
  • PhoenixFire
Thanks beeqay. Helpful to know that.

Looking for something else?

Not the answer you are looking for? Search for more explanations.