Ace school

with brainly

  • Get help from millions of students
  • Learn from experts with step-by-step explanations
  • Level-up by helping others

A community for students.

A 47 kg figure skater is spinning on the toes of her skates at 1.5 rev/s. Her arms are outstretched as far as they will go. In this orientation, the skater can be modeled as a cylindrical torso (42 kg, 20 cm average diameter, 160 cm tall) plus two rod-like arms (2.5 kg each, 62 cm long) attached to the outside of the torso. The skater then raises her arms straight above her head, where she appears to be a 45 kg, 20-cm-diameter, 200-cm-tall cylinder.

Physics
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Join Brainly to access

this expert answer

SEE EXPERT ANSWER

To see the expert answer you'll need to create a free account at Brainly

Change in the angular momentum. What is the questions btw? What do I need to solve? lol
You want me to get the speed/angular velocity after she raises her hand?
Lol I just lost $150 :/

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

LOl. :/ @Ishaan94
Why did you lose $150?
No, umm... I need to find her rotation frequency in rev/s.
We need to use the idea of conservation of angular momentum. This states, as applied to this particular example, that the skaters angular momentum will remain the same with her arms outstretched and with her arms above her head. Let's let subscript 1 indicate the case where her arms are outstretched and subscript 2 indicate the case where her arms are over head. We know that angular momentum is expressed as\[L = I \omega\]where \(I\) is the moment of inertia and \(\omega\) is the angular velocity in rad/s. Refer here for a list of moments of inertia: http://en.wikipedia.org/wiki/List_of_moments_of_inertia First, let's calculate the skaters moment of inertia in Case 1. Her moment of inertia can be represented as the sum of three separate, easy to represent geometric figures. 1) Her toros as a cylinder (8th row of the table at the above link.) 2 &3) Her arms as thin rods whose axis of rotation is at the end (3rd row) This sum is expressed as\[I_1 = I_{Cyl} + I_{arm} + I_{arm} = I_{cyl} + 2 I_{arm} = {m_tr^2 \over 2} + 2 \cdot \left [m_aL^2 \over 3 \right ] \] where \(m_t\) is the mass of the skater's torso, \(r\) is the radius of the skaters torso, \(m_a\) is the mass of the skater's arms, and \(L\) is the length of the skater's arms. The skater's moment of inertia in Case 2 can be modeled as a cylinder\[I_2 = {m_2 r^2 \over 2}\] where \(m_2 = 45 kg\) and \(r\) is the radius of the torso (same as in Case 1). Now, we can set up an expression for the conservation of angular momentum as\[I_1 \omega_1 = I_2 \omega_2\]
This is a typical case of a non-solid system, in which angular momentum is conserved, whereas kinetic energy is not

Not the answer you are looking for?

Search for more explanations.

Ask your own question