Open study

is now brainly

With Brainly you can:

  • Get homework help from millions of students and moderators
  • Learn how to solve problems with step-by-step explanations
  • Share your knowledge and earn points by helping other students
  • Learn anywhere, anytime with the Brainly app!

A community for students.

The radius of one sphere is twice as great as the radius of a second sphere. Find the ratio of their volumes.

I got my questions answered at in under 10 minutes. Go to now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Join Brainly to access

this expert answer


To see the expert answer you'll need to create a free account at Brainly

Volume of a sphere:\[V= {4\over3}\pi r^3\] Let's call your two radii r_1 and r_2, where\[r_1 = 2 r_2\]Then we can quickly see:\[V_1 = {4\over3} \pi {r_1}^3\] and \[V_2 = {4\over3} \pi {r_2}^3\]Substituting in the fact that r_1 is double r_2, we find\[V_1 = {4\over3} \pi {(2r_2)}^3\]The ratio of volumes, if you cancel out the 4/3 and pi's, is:\[{V_1 \over V_2} ={ {(2r_2)}^3 \over {r_2}^3} = 2^3 = 8\]
The ratio is 8? That doesn't make sense.
Why not? The units make sense.

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

This basically means that the first sphere is 8 times as large as the second sphere.
Oh!! That's what I didn't get! Thanks!

Not the answer you are looking for?

Search for more explanations.

Ask your own question