Open study

is now brainly

With Brainly you can:

  • Get homework help from millions of students and moderators
  • Learn how to solve problems with step-by-step explanations
  • Share your knowledge and earn points by helping other students
  • Learn anywhere, anytime with the Brainly app!

A community for students.

\huge lim_{x rightarrow 1} frac{sqrt[5]{2x+1}-1}{sqrt[4]{2x+1}-1}

Mathematics
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Join Brainly to access

this expert answer

SIGN UP FOR FREE
\[\lim_{x \rightarrow 1}\frac{\sqrt[5]{2x+1}-1}{\sqrt[4]{2x+1}-1}\] Correct?
Is so the function is continuous at x=1 so just plug it right on in :)
if not is *

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

@myininaya : sry i wrote it wrong ,Limit Tends to 0 .
Ok and hey which way do you prefer to do this? algebraically or l'hospital?
algebraically
\[\lim_{x \rightarrow 0}\frac{\sqrt[5]{2x+1}-1}{\sqrt[4]{2x+1}-1}\] Let me think on the algebraic approach I think it might be a substitution So the lcm of 5 and 4 is 20 So lets try the sub \[u^{20}=2x+1\] So that means \[(u^{20})^\frac{1}{5}=(2x+1)^\frac{1}{5} => u^4=\sqrt[5]{2x+1}\] and \[(u^{20})^\frac{1}{4}=(2x+1)^\frac{1}{4} => u^5=\sqrt[4]{2x+1}\]
So if x goes to 0 then what does u go to ?
\[u^{20}=2x+1 => u=(2x+1)^\frac{1}{20} \text{ correct?}\] So can you tell me what u goes to if x goes to 0?
Eyad we are almost there :)

Not the answer you are looking for?

Search for more explanations.

Ask your own question