Here's the question you clicked on:
elizabethann509
How do I solve this? The ratio of the areas of two similar polygons is 49:16. If the perimeter of the first polygon is 22 cm, what is the perimeter of the second polygon?
If these are regular polygons, then the question involves some manipulation of the equation: \[Area = (s^{2}*N)/(4 \tan (180/N))\] where s = the length of a side, and N = the number of sides. Since we're assuming the polygon is regular, the perimeter can be represented by the following equation: p = sN. Set up a ratio of areas (e.g Area1/ Area2 = 49/16) and the denominators cancel. You're left with \[Area_1/Area_2 = ( p^2_1N )(p^2_2N)\]. The "N"s cancel, and you get an equation relating area and perimeter for *regular* polygons. I hope you can take it from there.