KingGeorge
  • KingGeorge
[SOLVED] Before I go to bed, have an interesting little number theory problem because I'm bored. Suppose \(p\) is an odd prime. Show that \[\large\left(\left(\frac{p-1}{2}\right)!\right)^2\equiv(-1)^{\frac{p+1}{2}}\pmod{p}\] (The whole factorial is squared)
Mathematics
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions.

KingGeorge
  • KingGeorge
[SOLVED] Before I go to bed, have an interesting little number theory problem because I'm bored. Suppose \(p\) is an odd prime. Show that \[\large\left(\left(\frac{p-1}{2}\right)!\right)^2\equiv(-1)^{\frac{p+1}{2}}\pmod{p}\] (The whole factorial is squared)
Mathematics
chestercat
  • chestercat
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

anonymous
  • anonymous
First note that:\[\left(\left(\frac{p-1}{2}\right)!\right)^2 = \left(1\cdot2\cdot 3\cdots \frac{p-1}{2}\right)\left(1\cdot2\cdot 3\cdots \frac{p-1}{2}\right)\]Since we are looking at things mod p, we see that:\[1 = -(p-1),2 = -(p-2),\ldots , \frac{p-1}{2}=-\left(\frac{p-1}{2}+1\right)\]This gives us:\[\left(1\cdot2\cdot 3\cdots \frac{p-1}{2}\right)\left(1\cdot2\cdot 3\cdots \frac{p-1}{2}\right)\]\[=\left(1\cdot2\cdot 3\cdots \frac{p-1}{2}\right)\left(-\left(\frac{p-1}{2}+1\right)\cdots -(p-1)\right)\]\[=(-1)^{\frac{p-1}{2}}(p-1)!\]After this, an application of Wilson's Theorem will do the trick.
KingGeorge
  • KingGeorge
Perfect solution.

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

Looking for something else?

Not the answer you are looking for? Search for more explanations.