mathslover
  • mathslover
Hello friends ... this is a tutorial that contains some interesting facts about quadratic equations ...
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
mathslover
  • mathslover
mathslover
  • mathslover
HERE WE GO : Let alpha and beta are the 2 roots of the quadratic equation \(\large{ax^2+bx+c=0}\) as per the tutorial that i posted earlier : \[\huge{\alpha = \frac{-b+\sqrt{b^2-4ac}}{2a}}\] \[\huge{\beta=\frac{-b-\sqrt{b^2-4ac}}{2a}}\] 1) Sum of the roots : \[{\alpha + \beta = \frac{-b+\sqrt{b^2-4ac}}{2a}+\frac{-b-\sqrt{b^2-4ac}}{2a}}\] \[\huge{\alpha+\beta=\frac{-2b}{2a}}\] \[\huge{\alpha+\beta=\frac{-b}{a}}\] 2) Product of roots : \[\large{\alpha*\beta=(\frac{-b+\sqrt{b^2-4ac}}{2a})*(\frac{-b-\sqrt{b^2-4ac}}{2a})}\] \[\large{\alpha*\beta=\frac{b^2-b^2+4ac}{4a^2}}\] \[\large{\alpha*\beta=\frac{4ac}{4a^2}}\] \[\huge{\alpha*\beta=\frac{c}{a}}\]
mathslover
  • mathslover

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

lalaly
  • lalaly
very nice @mathslover
mathslover
  • mathslover
thanks @lalaly
maheshmeghwal9
  • maheshmeghwal9
gr8:)
mathslover
  • mathslover
thanks @maheshmeghwal9
anonymous
  • anonymous
To practice problems about product and sum of roots, do some problems on http://www.saab.org/mathdrills/act.html
klimenkov
  • klimenkov
It is Vieta's formulas for the quadratic equation.
jiteshmeghwal9
  • jiteshmeghwal9
i wanna ask can u give me the proof of quadratic equation @mathslover ???
mathslover
  • mathslover

Looking for something else?

Not the answer you are looking for? Search for more explanations.