A man wishes to estimate the distance of a near by tower first he measure the tower from a and next from b if basis is 100m and the angle is 40 find the distance between the man and the tower?
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga.
Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus.
Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
A man wishes to estimate the distance of a near by tower first he measure the tower from a and next from b if basis is 100m and the angle is 40 find the distance between the man and the tower?
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga.
Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus.
Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
You can find the length of segment AC using trigonometric functions, since we are given the length of AB and the measure of angle ACB. Since \[\tan(40)=\frac{AB}{AC}\] Solving for AC yields \[AC = \frac{AB}{\tan(40)} = \frac{100}{\tan(40)}\] Work that out using a calcuator: http://www.wolframalpha.com/input/?i=100%2Ftan%2840%29
To convert from degrees to radians (and vice-versa)
Degrees to radians:\[\text{Angle in degrees} \times \frac{\pi}{180}\]
Radians to degrees:\[\text{Angle in radians} \times \frac{180}{\pi}\]
Well, if the angle is not something like 0,30,45,60,90,120,135,150,180, and you are prohibited from using calculators, then most likely a table of sines/cosines/tangents will be provided.
you may use tan120 = tan3(40) and expand it
forms a cubic eqn hmm..you can try to solve it but wont be that easy..
you may better make assumtion,,or use calculator,,why not leave answer in tan form ?
note tan 45 = 1 and tan 30 = 1/sqrt3 = 0.6 approx so tan 40 should be something in between ,,maybe 0.8 and 0.9..hmm