anonymous
  • anonymous
The numerator of an improper fraction is 4 more than the denominator. When the numerator is decreased by 3 and the denominator is decreased by 1, the fraction is decreased by 3/10. Find the original improper fraction.
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
FoolAroundMath
  • FoolAroundMath
Let the denominator of original fraction be x numerator of original fraction = x+4 new numerator = (x+4)-3 = x+1 new denominator = x-1 new fraction = original fraction - 3/10 \[\frac{x+1}{x-1} = \frac{x+4}{x} - \frac{3}{10}\] can you solve this now?
anonymous
  • anonymous
Thanks
anonymous
  • anonymous
Let the following be the original improper fraction:\[\frac{x+4}{x} \]Solve the following for x:\[\frac{x+4-3}{x-1}\text{=}\frac{x+4}{x}-\frac{3}{10}\]\[\left\{x=\frac{8}{3},x=5\right\} \]Calculate the value of the original fraction when x=8/3\[\frac{4+x}{x}\text{=}\frac{4+\frac{8}{3}}{\frac{8}{3}}\text{=}\frac{5}{2}\]and x = 5\[\frac{4+5}{5}=\frac{9}{5} \]Assume that the answer is \[\frac{9}{5} \]and verify it's validity:\[\frac{9}{5}-\frac{3}{10}\text{ = }\frac{9-3}{5-1}\]\[\frac{3}{2}\text{ = }\frac{3}{2}\]Although 5/2 is another solution to the equation, it will not pass the validity test.

Looking for something else?

Not the answer you are looking for? Search for more explanations.