anonymous
  • anonymous
An athlete's usual running speed in still air is 8 m/s. On one windy day, the time he took to run 100m, running with the wind, was 6 2/3 seconds less than the time he took to run 100m, running against the wind. a. Given that the speed of the wind that day was "w m/s", write down an expression in terms of w for the time he took to run 100m when running with the wind. b. Form an equation in w and show that it reduces to w^2+30w-64=0 c. Solve the equation to find the speed of the wind
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
i say b..
anonymous
  • anonymous
Ummm... It's not a multiple choice question, those are actually the questions, you know, a,b and c
ganeshie8
  • ganeshie8
(time taken to travel against wind) - (time take to travel with wind) = 6 2/3 seconds

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

ganeshie8
  • ganeshie8
time = distance/speed
ganeshie8
  • ganeshie8
can you calculate both the times, and plug in ?
FoolAroundMath
  • FoolAroundMath
Speed of the man running with the wind = (8+w) Speed when running against the wind = (8-w) Time taken for 100m running with the wind = 100/(8+w) Time taken for 100m running against the wind = 100/(8-w) Given: \[\frac{100}{8+w} = \frac{100}{8-w} - 6\frac{2}{3}\] Can you proceed further ?
anonymous
  • anonymous
the equation can be deduced from ((100/(8-w)) - ((100/(8+w)) =20/3 which reduces to 2w/((8-w)(8+w)) =1/15 and hence w^2+30w-64=0 solving we have (w+32)(w-2)=0 w=2 (w=-32 ignored) spped of wind =2m/s

Looking for something else?

Not the answer you are looking for? Search for more explanations.