anonymous
  • anonymous
In the Tower of Hanoi problem, suppose you have three pegs and n disks. How many different arrangements are there of the n disks on three pegs so that no disk is on top of a smaller disk?
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
KingGeorge
  • KingGeorge
Someone correct me if I'm doing this completely wrong. I believe the trick is to start with the bottom disk. You have 3 places to put it. Now the next largest disk, you still have 3 places to put this. Continue on, and each disk you will have exactly 3 choices of where to put it. Thus, there should be \[3^n\]arrangements.
KingGeorge
  • KingGeorge
And since larger disks must be below smaller disks, in every possible setting of the towers of hanoi, you can place the largest disk first, then the second largest, and so on.
experimentX
  • experimentX
isn't it 2^n - 1 ?? I remember doing 2^n-1 ... though i never thought behind it??

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

KingGeorge
  • KingGeorge
That's the minimum number of steps it takes to solve, not the different arrangements.
anonymous
  • anonymous
okay thank you.. i'm was thinking wrong, my first intuition was that the first peg can have n disks, the second, another n, and so continuing on this fashion i thought it was n^3. looks like i thought the other way around, I always get confused on these kinds of problems..
anonymous
  • anonymous
i was*
KingGeorge
  • KingGeorge
I still have that problem sometimes :/
anonymous
  • anonymous
haha but I think you got this one right though, thanks. it's like the question of how many functions from a set of m elements to n elements are there. haha

Looking for something else?

Not the answer you are looking for? Search for more explanations.