A community for students.
Here's the question you clicked on:
 0 viewing
zepp
 3 years ago
Derivative of \(x^2\)?
I used the difference quotient formula, but I'm stuuuuck :(
\[\large \begin{align}\frac{d}{dx}x^2&=\lim_{\Delta x \rightarrow 0}\frac{f(x_0+\Delta x)f(x_0)}{\Delta x}\\
&=\lim_{\Delta x \rightarrow 0}\frac{(x_0+\Delta x)^2x_0}{\Delta x} \\
&=\lim_{\Delta x \rightarrow 0}\frac{x_0^2+2x_0\Delta x+\Delta x^2x_0}{\Delta x} \\
&=\lim_{\Delta x \rightarrow 0}\frac{1}{\Delta x}(x_0^2+2x_0\Delta x+\Delta x^2x_0) \\
&=\lim_{\Delta x \rightarrow 0}(\frac{x_0^2}{\Delta x}+2x_0+\frac{1}{\Delta x}\frac{x_0}{\Delta x}) \end{align}\]
zepp
 3 years ago
Derivative of \(x^2\)? I used the difference quotient formula, but I'm stuuuuck :( \[\large \begin{align}\frac{d}{dx}x^2&=\lim_{\Delta x \rightarrow 0}\frac{f(x_0+\Delta x)f(x_0)}{\Delta x}\\ &=\lim_{\Delta x \rightarrow 0}\frac{(x_0+\Delta x)^2x_0}{\Delta x} \\ &=\lim_{\Delta x \rightarrow 0}\frac{x_0^2+2x_0\Delta x+\Delta x^2x_0}{\Delta x} \\ &=\lim_{\Delta x \rightarrow 0}\frac{1}{\Delta x}(x_0^2+2x_0\Delta x+\Delta x^2x_0) \\ &=\lim_{\Delta x \rightarrow 0}(\frac{x_0^2}{\Delta x}+2x_0+\frac{1}{\Delta x}\frac{x_0}{\Delta x}) \end{align}\]

This Question is Closed

freckles
 3 years ago
Best ResponseYou've already chosen the best response.2hey you left something off man on x_0

anonymous
 3 years ago
Best ResponseYou've already chosen the best response.0\[\large \begin{align}\frac{d}{dx}x^2&=\lim_{\Delta x \rightarrow 0}\frac{f(x_0+\Delta x)f(x_0)}{\Delta x}\\ &=\lim_{\Delta x \rightarrow 0}\frac{(x_0+\Delta x)^2x_0}{\Delta x} \\ &=\lim_{\Delta x \rightarrow 0}\frac{x_0^2+2x_0\Delta x+\Delta x^2x_0}{\Delta x} \\ &=\lim_{\Delta x \rightarrow 0}\frac{1}{\Delta x}(x_0^2+2x_0\Delta x+\Delta x^2x_0^2) \\ & \end{align}\]

freckles
 3 years ago
Best ResponseYou've already chosen the best response.2gosh golly where you see x_0 it should be x_0^2

freckles
 3 years ago
Best ResponseYou've already chosen the best response.2where you have f(x_0) you suppose to have x_0^2

freckles
 3 years ago
Best ResponseYou've already chosen the best response.2sat left is off in his middle two lines

zepp
 3 years ago
Best ResponseYou've already chosen the best response.0So \[\large \begin{align}\frac{d}{dx}x^2&=\lim_{\Delta x \rightarrow 0}\frac{f(x_0+\Delta x)f(x_0)}{\Delta x}\\ &=\lim_{\Delta x \rightarrow 0}\frac{(x_0+\Delta x)^2x_0^2}{\Delta x} \\ &=\lim_{\Delta x \rightarrow 0}\frac{x_0^2+2x_0\Delta x+\Delta x^2x_0}{\Delta x} \\ &=\lim_{\Delta x \rightarrow 0}\frac{1}{\Delta x}(x_0^2+2x_0\Delta x+\Delta x^2x_0^2) \\ &=\lim_{\Delta x \rightarrow 0}\frac{1}{\Delta x}(2x_0\Delta x+\Delta x^2) \\ &=\lim_{\Delta x \rightarrow 0}(2x_0+\Delta x) \end{align}\] ?

freckles
 3 years ago
Best ResponseYou've already chosen the best response.2you missed it in the third line but yeah you got it lol

zepp
 3 years ago
Best ResponseYou've already chosen the best response.0I replace Delta x by 0, then I get \(2x_0\), that 0 is unecessary so \[\frac{d}{dx}x^2=2x\]

freckles
 3 years ago
Best ResponseYou've already chosen the best response.2Yes! Brilliant! Good job! :)
Ask your own question
Sign UpFind more explanations on OpenStudy
Your question is ready. Sign up for free to start getting answers.
spraguer
(Moderator)
5
→ View Detailed Profile
is replying to Can someone tell me what button the professor is hitting...
23
 Teamwork 19 Teammate
 Problem Solving 19 Hero
 Engagement 19 Mad Hatter
 You have blocked this person.
 ✔ You're a fan Checking fan status...
Thanks for being so helpful in mathematics. If you are getting quality help, make sure you spread the word about OpenStudy.