Derivative of \(x^2\)? I used the difference quotient formula, but I'm stuuuuck :( \[\large \begin{align}\frac{d}{dx}x^2&=\lim_{\Delta x \rightarrow 0}\frac{f(x_0+\Delta x)-f(x_0)}{\Delta x}\\ &=\lim_{\Delta x \rightarrow 0}\frac{(x_0+\Delta x)^2-x_0}{\Delta x} \\ &=\lim_{\Delta x \rightarrow 0}\frac{x_0^2+2x_0\Delta x+\Delta x^2-x_0}{\Delta x} \\ &=\lim_{\Delta x \rightarrow 0}\frac{1}{\Delta x}(x_0^2+2x_0\Delta x+\Delta x^2-x_0) \\ &=\lim_{\Delta x \rightarrow 0}(\frac{x_0^2}{\Delta x}+2x_0+\frac{1}{\Delta x}-\frac{x_0}{\Delta x}) \end{align}\]

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

Derivative of \(x^2\)? I used the difference quotient formula, but I'm stuuuuck :( \[\large \begin{align}\frac{d}{dx}x^2&=\lim_{\Delta x \rightarrow 0}\frac{f(x_0+\Delta x)-f(x_0)}{\Delta x}\\ &=\lim_{\Delta x \rightarrow 0}\frac{(x_0+\Delta x)^2-x_0}{\Delta x} \\ &=\lim_{\Delta x \rightarrow 0}\frac{x_0^2+2x_0\Delta x+\Delta x^2-x_0}{\Delta x} \\ &=\lim_{\Delta x \rightarrow 0}\frac{1}{\Delta x}(x_0^2+2x_0\Delta x+\Delta x^2-x_0) \\ &=\lim_{\Delta x \rightarrow 0}(\frac{x_0^2}{\Delta x}+2x_0+\frac{1}{\Delta x}-\frac{x_0}{\Delta x}) \end{align}\]

Mathematics
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

hey you left something off man on x_0
\[f(x_0)=x_0^2\]
Where?

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

where you have f(x_0)
\[\large \begin{align}\frac{d}{dx}x^2&=\lim_{\Delta x \rightarrow 0}\frac{f(x_0+\Delta x)-f(x_0)}{\Delta x}\\ &=\lim_{\Delta x \rightarrow 0}\frac{(x_0+\Delta x)^2-x_0}{\Delta x} \\ &=\lim_{\Delta x \rightarrow 0}\frac{x_0^2+2x_0\Delta x+\Delta x^2-x_0}{\Delta x} \\ &=\lim_{\Delta x \rightarrow 0}\frac{1}{\Delta x}(x_0^2+2x_0\Delta x+\Delta x^2-x_0^2) \\ & \end{align}\]
gosh golly where you see x_0 it should be x_0^2
Ohh.
where you have f(x_0) you suppose to have x_0^2
sat left is off in his middle two lines
So \[\large \begin{align}\frac{d}{dx}x^2&=\lim_{\Delta x \rightarrow 0}\frac{f(x_0+\Delta x)-f(x_0)}{\Delta x}\\ &=\lim_{\Delta x \rightarrow 0}\frac{(x_0+\Delta x)^2-x_0^2}{\Delta x} \\ &=\lim_{\Delta x \rightarrow 0}\frac{x_0^2+2x_0\Delta x+\Delta x^2-x_0}{\Delta x} \\ &=\lim_{\Delta x \rightarrow 0}\frac{1}{\Delta x}(x_0^2+2x_0\Delta x+\Delta x^2-x_0^2) \\ &=\lim_{\Delta x \rightarrow 0}\frac{1}{\Delta x}(2x_0\Delta x+\Delta x^2) \\ &=\lim_{\Delta x \rightarrow 0}(2x_0+\Delta x) \end{align}\] ?
you missed it in the third line but yeah you got it lol
I replace Delta x by 0, then I get \(2x_0\), that 0 is unecessary so \[\frac{d}{dx}x^2=2x\]
Thanks! :)
Yes! Brilliant! Good job! :)

Not the answer you are looking for?

Search for more explanations.

Ask your own question