anonymous
  • anonymous
A 50-N ⋅ m torque acts on a wheel with a moment of inertia 150 kg ⋅ m2. If the wheel starts from rest, how long will it take the wheel to make one revolution? (a) 0.33 s (b) 2.4 s (c) 10 s (d) 0.66 s (d) 6.1 s
Physics
schrodinger
  • schrodinger
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

Vincent-Lyon.Fr
  • Vincent-Lyon.Fr
This is basic application of kinematics concerning rotation and angular acceleration. What do you think?
anonymous
  • anonymous
im not sure of the formula to use for angular acceleration?
anonymous
  • anonymous
torque=MOMENT OF INERTIA*angular acceleration

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

Vincent-Lyon.Fr
  • Vincent-Lyon.Fr
The formulae are the same as those for linear acceleration: Substitute: Torque τ for Force F Moment of inertia I for Mass m Angular acceleration α for Linear acceleration a Then substitute: Angular velocity ω for Linear velocity v Angular displacement θ for Linear displacement s (or x)
anonymous
  • anonymous
Remember formula: \tau = I*\alpha. Solve for \alpha. Then 2*\pi = 1/2*\alpha*t^2 and solve for t.

Looking for something else?

Not the answer you are looking for? Search for more explanations.