• anonymous
the demand function for maria's flower shop can be modeled by p(x) = 20 - 0.02x, where x is the number of bouquets she makes and sells. the cost function is given by C(x) 10 + 2x + 0.1x^2. (a) find the # of bouquets she has to make to minimze the average cost of one bouquet. (b) fnd the values of x and p that maximize the revenue. (c) find the plastic elasticity for the values of x from part (b) for part a, i got x = 10, -10 ... where do i go from here. and what would the endpoints be?
  • jamiebookeater
See more answers at
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly


Get your free account and access expert answers to this
and thousands of other questions

  • anonymous
i understsnd how to do parts b and c, but not a .. could someone help me??

Looking for something else?

Not the answer you are looking for? Search for more explanations.