anonymous
  • anonymous
How do you determine if a function is odd or even degree
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
NotTim
  • NotTim
|dw:1341470686812:dw||dw:1341470707694:dw|
NotTim
  • NotTim
http://www.purplemath.com/modules/polyends.htm
lgbasallote
  • lgbasallote
sometimes you can just look at the equation itself \[y = x^5 + 2x^3 + x\] all the exponents of x in this equation are 1,3 and 5..all are odd..therefore this is an odd function \[y = 2x^2 + 4\] the exponents are 2 and 0..both are even therefore this is an even function note that this can only be applied sometimes

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

campbell_st
  • campbell_st
the simple test is to substitute -x for x if f(-x) = f(x) the function is even ... e,g, f(x) = x^2 f(-x) = (-x)^2 = x^2 id f(-x) = -f(x) the function is odd e.g f(x) = x^3 f(-x) = (-x)^3 = -x^3 the function can also be neither odd nor even as an example f(-x) = x^3 + 1 = -x^3 + 1 which isn't the negative of the original function.

Looking for something else?

Not the answer you are looking for? Search for more explanations.