Ace school

with brainly

  • Get help from millions of students
  • Learn from experts with step-by-step explanations
  • Level-up by helping others

A community for students.

The graph of the function y=e^(-x^2/2) isn't the same as the graph of the function y=e^(-x) is it because that the first expression wants a positive value of all x? And does anyone know d/dx (x^2-1)e^(-x^2/2)?

OCW Scholar - Single Variable Calculus
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Join Brainly to access

this expert answer

SEE EXPERT ANSWER

To see the expert answer you'll need to create a free account at Brainly

Both \[f(x)=e^{(-x^2/2)}\]\[y=e^{-x}\]may have negative value for x. Following links provide the graph of each function. f(x) --> http://www.wolframalpha.com/input/?i=y%3De^%28-x^2%2F2%29 g(x) --> http://www.wolframalpha.com/input/?i=y%3De^%28-x%29 Note something: 1) ^2 cause concave up. 2) - sign cause mirror image of the + graphs. Hence g(x) is a mirror image of e^x , whereas f(x) has a concave, but it is down due to the negative sign.
On the second question First of all, multiply/rearrange the function. \[f(x)=(x^2-1)(e^{-x^2/2})=x^2 e^{-x^2/2}-e^{-x^2/2}\]Next, we use chain rule.\[f'(x)=2xe^{-x^2/2}+x^2(-2x/2)e^{-x^2/2}+(-)(-2x/2)e^{-x^2/2}\]\[f'(x)=2xe^{-x^2/2}-x^3e^{-x^2/2}+xe^{-x^2/2}\]\[f'(x)=e^{-x^2/2}(2x-x^3+x)\]\[f'(x)=e^{-x^2/2}(3x-x^3)\]
P.S. g(x) I mentioned on the first response is y=e^-x

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

This is what I meant and I graphed and expected to see the same graph...
1 Attachment
\[\frac{1}{\sqrt{e^{x^2}}} \neq \frac{1}{e^x}\] I think you mistaken \[\frac{1}{\sqrt{e^{x^2}}} \text{as} \frac{1}{\sqrt{e^{2x}}}\]See? say for example e=2.7 and let x=2. If you subtitle those values to what you meant before, the left hand side (LHS) will be diferrent to right hand side (RHS).
of course haha it's been a long day thanks! I was just starting to freak out...
LOL. You just need to take a fresh air. Observe that the ^2 here is for x only; not (e^x) altogether. \[e^{(x^2)} \neq (e^x)^2 \]
Good idea! Going for a run and pump some more blood into my head. Thanks!
student 92.... i do not think e(x^2)≠(e^x)^2 They are both equal....
let just say \( x=1 \). \[e(x^2)=e(1^2)=e \]\[(e^x)^2=(e^1)^2=e^2 \]Are they still the same?

Not the answer you are looking for?

Search for more explanations.

Ask your own question