anonymous
  • anonymous
Show that if \(x^4+ax^3+2x^2+bx+1\) has a real solution, then \(a^2+b^2 ≥ 8\).
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
@mukushla @KingGeorge
anonymous
  • anonymous
taxing my brain first thing in the morning one thought: we know generally what this looks like. if it is to have at least one real solution, then at least one zero of the derivative must have second coordinate below the \(x\) axis let me see if i can make that lead to anything
anonymous
  • anonymous
seems that if either \(a=3\) or \(b=3\) you get a zero at \(x=-1\)

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
here is my solution but i dont like it i will try to find a better one let \[y=ax+\frac{b}{x}\] u have \[x^4+ax^3+2x^2+bx+1=x^4+2x^2+1+x^2(ax+\frac{b}{x})=(x^2+1)^2+x^2y=0\] then \[y=-(x+\frac{1}{x})^2 \] there is at least one solution for equation above if and only if \[y \le -4 \ \ \ \ since \ \ \ x+\frac{1}{x}\ge2\] then we must have \[\max \left\{ y=ax+\frac{b}{x} \right\} =-4 \\ y'=0 \\ x=-\sqrt{\frac{b}{a}} \\ so \\ \max \left\{ y \right\}=-2\sqrt{ab}=-4 \\ ab=4 \\ a^2+b^2\ge 2ab=8\] a and be must have the same sign
anonymous
  • anonymous
a better way to proof the second part we want to have \[ax+\frac{b}{x}\le-4\] multiply it by x u will get \[ax^2+4x+b \ge0 \\ or \\ ax^2+4x+b \le0 \] since u dont know about the sign of x But In both cases discriminant of quadratic must be less than or equal to zero this gives: \[16-4ab \le0\\ab \ge4\\a^2+b^2\ge2ab \ge8\]
anonymous
  • anonymous
here is a better one \[x^4 +ax^3+2x^2+bx+1 = (x^2 + \frac{a}{2} x)^2 + (1+\frac{ b}{2} x)^2 + \frac{1}{4} (8−a^2 −b^2)x^2\] In this case, the polynomial is strictly positive unless a^2+b^2−8 ≤ 0
anonymous
  • anonymous
Perfect. I was trying to complete square but didn't get it. :/
anonymous
  • anonymous
thanks a lot mukushla

Looking for something else?

Not the answer you are looking for? Search for more explanations.