anonymous
  • anonymous
Solve 2 log2 2 + 2 log2 6 – log2 3x = 3
Mathematics
schrodinger
  • schrodinger
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

anonymous
  • anonymous
the log(4)(36)-log36=3
anonymous
  • anonymous
hmm ,from where you got (36) ???
anonymous
  • anonymous
i meant to put log(4)(36)-log3x=3 sorry

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
right now i really just don't know where to go from log144-log3x=3
anonymous
  • anonymous
Wow I would have never gotten that thank you! but thats not one of the answer choices
anonymous
  • anonymous
ok im confused
anonymous
  • anonymous
thay are x= 2,x=6,x=16,x=18
anonymous
  • anonymous
Lets begin step by step First we will get the power inside the log : \[\Large Log_{2}2^2+Log_{2}6^2-Log_{2}(3x)=3\] Then according the the property that i showed to you in the last Post We will combine them: \[\Large Log_{2}\frac{2^2*6^2}{(3x)}=3\] Lets change it to exponential : \[\Large \frac{2^3}{1}=\frac{2^2*6^2}{(3x)}\] Now lets change it to an equation: \[\Large \color{red}{24x=144}\] Divide by 24 \[\Huge \color{blue}{x=6}\]
anonymous
  • anonymous
Got it ?
anonymous
  • anonymous
ooh ok i got it thanks

Looking for something else?

Not the answer you are looking for? Search for more explanations.