Find an equation of the tangent to the curve at the point corresponding to the given value of the parameter.
x = t − t\(^{−1}\), y = 6 + t\(^2\), t = 1
The correct answer needs to be in the form of y=something... I have this (incorrect):
\[y=(\large\frac{2t^3}{t^2+1})x+7\]
@ t=1, x=0 and y=7
\(\large\frac{dy}{dt}\)=2t
\(\large\frac{dx}{dt}\)= 1+\(\large\frac{1}{t^2}\) = \(\large\frac{t^2+1}{t^2}\)
Dividing by something, same as the product of its reciprocal, when doing \(\frac{dy}{dx}\)
Where's the error?

Hey! We 've verified this expert answer for you, click below to unlock the details :)

I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!

It's looking correct to me...

except that you can plug in the value for t...
which just makes y=x+7

Looking for something else?

Not the answer you are looking for? Search for more explanations.

## More answers

Looking for something else?

Not the answer you are looking for? Search for more explanations.