The slope of the graph of f(x) = |x| changes abruptly when x = 0. Does this function have a derivative? If so, what is it? If not, why not? Explanation is given in the course material, but not clear...Why cant the tangent line be defined at (0,0)...

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

The slope of the graph of f(x) = |x| changes abruptly when x = 0. Does this function have a derivative? If so, what is it? If not, why not? Explanation is given in the course material, but not clear...Why cant the tangent line be defined at (0,0)...

OCW Scholar - Single Variable Calculus
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

The function is not continuous at 0 so the derivative can't be taken. The two sided limit as x > 0 does not exist. As the function is elsewhere linear, its derivative is constant. For x < o it is -1 for x > 0 it is 1.
the function is continuous but hasn't a derivative because: \[\lim_{x \rightarrow -0}[f(x+\Delta x)-f(x)/\Delta x] \neq \lim_{x \rightarrow +0}[f(x+\Delta x)-f(x)/\Delta x] \] for x<0 we have :\[f(x+\Delta x)-f(x)/\Delta x=[-(x+\Delta x)+x]/\Delta x= -1\] for x>0 we get :\[f(x+\Delta x)-f(x)/\Delta x=[(x+\Delta x)-x]/\Delta x= 1\] so the limit of the difference quotient doesn't exist and so that the derivative at x=0
f(x)=|x| is continuous at x=0: \[f(x ^{-})=\lim_{x \rightarrow 0}\left| x \right|=0\] \[f(x ^{+})=\lim_{x \rightarrow 0}\left| x \right|=0\] |dw:1342611754796:dw| However, \[f \prime(x)\] has a point of jump discontinuity at x=0: \[f \prime(0^{-})=\lim_{x \rightarrow 0}-1=-1\] \[f \prime(0^{+})=\lim_{x \rightarrow 0}1=1\] |dw:1342612014321:dw| at x=0 left hand limit \[\neq \] right-hand limit as Problem Set 1 Question 1D, 3 (d) and (e) demonstrate similar cases.

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

Not the answer you are looking for?

Search for more explanations.

Ask your own question