anonymous
  • anonymous
Specify a hybrid function over the maximal domain of f(x), where f(x) = 2/(sqrt(1-x^2))
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
\[2 \div \sqrt(1-x^2)\]
anonymous
  • anonymous
I got 2/ sqrt(1-x^2) between x E (0,1)
anonymous
  • anonymous
How do i get the other one?

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
I have the solution by the way
anonymous
  • anonymous
I just don't know how to get it.
anonymous
  • anonymous
The other solution somehow is -2/ sqrt(1-x^2) between x E (-1,0)
anonymous
  • anonymous
I have no idea how though
anonymous
  • anonymous
@lgbasallote
lgbasallote
  • lgbasallote
what lesson is this?
anonymous
  • anonymous
Its calculus
lgbasallote
  • lgbasallote
differential?
anonymous
  • anonymous
Yes, its in the differential chapter
lgbasallote
  • lgbasallote
i do not know this sorry
anonymous
  • anonymous
Ok, thanks anyway
lgbasallote
  • lgbasallote
@.Sam. do you know this?
anonymous
  • anonymous
I suppose you start with the fact that 1-x^2 must be greater than zero. Don't really see how the function can take negative values.

Looking for something else?

Not the answer you are looking for? Search for more explanations.