anonymous
  • anonymous
Which if any of the following statements are true? More than one answer may be correct. Answer a. The median and the altitude both pass through the vertex. b. The perpendicular bisectors and the median bisect the sides of a triangle. c. The perpendicular bisectors and altitudes are both perpendicular to the side. d. The perpendicular bisector must pass through the vertex.
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
my first choices where a and b
anonymous
  • anonymous
but got them wrong
anonymous
  • anonymous
please help me

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
I am thinking
ganeshie8
  • ganeshie8
only d is false
anonymous
  • anonymous
@Callisto
ganeshie8
  • ganeshie8
|dw:1342014442806:dw|
ganeshie8
  • ganeshie8
hmmm did u get @guccimayne ?
anonymous
  • anonymous
so it was only d thts false
ganeshie8
  • ganeshie8
yep !
ganeshie8
  • ganeshie8
|dw:1342014729987:dw|
ganeshie8
  • ganeshie8
thats ur perpendicular bisector. both are perpendicular to the side

Looking for something else?

Not the answer you are looking for? Search for more explanations.