what is the expected value of x^2 in mathematical form?

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

what is the expected value of x^2 in mathematical form?

Mathematics
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

in a simplified form
what do you mean?
\(x \times x\) I think that's what you mean.

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

yeah
mathematical form?
Hmm. Similarly: \( \color{Black}{\Rightarrow x^3 = x \times x\times x}\) \( \color{Black}{\Rightarrow x^4 = x \times x \times x \times x}\)
'Mathematical form' is still ambiguous.
some stats people know may know
\[\langle x^2\rangle =\sum\limits_{j=0}^\infty x^2 P(j)\]
lol
\[\int 2xdx\]
this reminds me of a very fundamental/basic question in calculus..please see my next question..i'll post link..
\[\frac{d}{dx} (\frac{x^3}{3})\]
what are you doing at @lgbasallote ,
\[x^2 = r^2 - y^2\]
trying to get all that's x^2 and see if anythign suits him
im pretty sure i have provided the answer to the question
we all think that...
,oh
i need E(x^2)=?
the expectiation value of \(x\) \[\langle x\rangle =E(x)\]
@UnkleRhaukus yes but x^2
\[Var(x)=E(x^2)-(E(x))^2\]
i got the ans... thanks all
\[\sigma_x=\langle x^2\rangle-\langle x\rangle ^2\]
:D
ya ur right
The expectation value , or expect value of a function is \[\langle f(x)\rangle =\sum\limits_{x=0}^\infty f(x)P(x)\] where \(P(x)\) is the probability of x
yes for a discrete random variable
im not sure why i put j instead of x,
oh, you want a continuous function?
no i know
thank you
\[\langle f(x)\rangle=\int\limits_{-\infty}^\infty f(x)\rho(x)\text dx\]
ya
where \(\rho(x)\) is the probability density
so \[\langle x^2\rangle=\int\limits_{-\infty}^\infty x^2\rho(x)\text dx\]
@UnkleRhaukus small question the E(constant) is a constant right
if the distribution of the variable \(x\) is constant , yes
thanks

Not the answer you are looking for?

Search for more explanations.

Ask your own question