anonymous
  • anonymous
what is the expected value of x^2 in mathematical form?
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
in a simplified form
lgbasallote
  • lgbasallote
what do you mean?
ParthKohli
  • ParthKohli
\(x \times x\) I think that's what you mean.

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
yeah
lgbasallote
  • lgbasallote
mathematical form?
ParthKohli
  • ParthKohli
Hmm. Similarly: \( \color{Black}{\Rightarrow x^3 = x \times x\times x}\) \( \color{Black}{\Rightarrow x^4 = x \times x \times x \times x}\)
ParthKohli
  • ParthKohli
'Mathematical form' is still ambiguous.
anonymous
  • anonymous
some stats people know may know
UnkleRhaukus
  • UnkleRhaukus
\[\langle x^2\rangle =\sum\limits_{j=0}^\infty x^2 P(j)\]
ParthKohli
  • ParthKohli
lol
lgbasallote
  • lgbasallote
\[\int 2xdx\]
anonymous
  • anonymous
this reminds me of a very fundamental/basic question in calculus..please see my next question..i'll post link..
lgbasallote
  • lgbasallote
\[\frac{d}{dx} (\frac{x^3}{3})\]
UnkleRhaukus
  • UnkleRhaukus
what are you doing at @lgbasallote ,
lgbasallote
  • lgbasallote
\[x^2 = r^2 - y^2\]
lgbasallote
  • lgbasallote
trying to get all that's x^2 and see if anythign suits him
UnkleRhaukus
  • UnkleRhaukus
im pretty sure i have provided the answer to the question
lgbasallote
  • lgbasallote
we all think that...
UnkleRhaukus
  • UnkleRhaukus
,oh
anonymous
  • anonymous
i need E(x^2)=?
UnkleRhaukus
  • UnkleRhaukus
the expectiation value of \(x\) \[\langle x\rangle =E(x)\]
anonymous
  • anonymous
@UnkleRhaukus yes but x^2
lalaly
  • lalaly
\[Var(x)=E(x^2)-(E(x))^2\]
anonymous
  • anonymous
i got the ans... thanks all
UnkleRhaukus
  • UnkleRhaukus
\[\sigma_x=\langle x^2\rangle-\langle x\rangle ^2\]
lalaly
  • lalaly
:D
anonymous
  • anonymous
ya ur right
UnkleRhaukus
  • UnkleRhaukus
The expectation value , or expect value of a function is \[\langle f(x)\rangle =\sum\limits_{x=0}^\infty f(x)P(x)\] where \(P(x)\) is the probability of x
anonymous
  • anonymous
yes for a discrete random variable
UnkleRhaukus
  • UnkleRhaukus
im not sure why i put j instead of x,
UnkleRhaukus
  • UnkleRhaukus
oh, you want a continuous function?
anonymous
  • anonymous
no i know
anonymous
  • anonymous
thank you
UnkleRhaukus
  • UnkleRhaukus
\[\langle f(x)\rangle=\int\limits_{-\infty}^\infty f(x)\rho(x)\text dx\]
anonymous
  • anonymous
ya
UnkleRhaukus
  • UnkleRhaukus
where \(\rho(x)\) is the probability density
UnkleRhaukus
  • UnkleRhaukus
so \[\langle x^2\rangle=\int\limits_{-\infty}^\infty x^2\rho(x)\text dx\]
anonymous
  • anonymous
@UnkleRhaukus small question the E(constant) is a constant right
UnkleRhaukus
  • UnkleRhaukus
if the distribution of the variable \(x\) is constant , yes
anonymous
  • anonymous
thanks

Looking for something else?

Not the answer you are looking for? Search for more explanations.