anonymous
  • anonymous
Topic: \(Calculus \ 2\), polar conversions Q: Identify name & Cartesian equation for: r = 2\(\tan \theta \sec \theta\) Any graphing calculator can quickly show this is a parabola the one I've sketched below, but I'm trying to understand the process here. These are the facts I know of: \(r=\sqrt{x^2+y^2}\) \(\theta = \tan^{-1}(\frac{y}{x})\) x = r cos θ y = r sin θ What's the trick here? Can somebody show me? (I'd be more than happy to give out a medal if you can do so) There are a few other problems related to this one I'm working on so a technique to be learned is the goa
Mathematics
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

anonymous
  • anonymous
\[\large \sqrt{x^2+y^2}=\tan(\tan^{-1}\frac{y}{x})\sec(\tan^{-1}\frac{y}{x})\] But then um... lol what? |dw:1342214986994:dw|
anonymous
  • anonymous
|dw:1342215821623:dw|
anonymous
  • anonymous
Omg that was it?! D-: Good work @myko

Looking for something else?

Not the answer you are looking for? Search for more explanations.