anonymous
  • anonymous
Integrate. sqrt(1+x^2)/x
Mathematics
katieb
  • katieb
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

anonymous
  • anonymous
I think it should be \[\int\limits_{}^{} 1/\sin(x)\cos^2x\]
Mimi_x3
  • Mimi_x3
Or start from \[\int\frac{\sqrt{1+x^{2}}}{x} dx\]
anonymous
  • anonymous
You could started from there, I got up to 1/sinxcos^2x

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

Mimi_x3
  • Mimi_x3
Assuming that you did the other part correct then.. \[\int \frac{1}{sinxcos^2{x}}\] wait..are you sure about that though?
lgbasallote
  • lgbasallote
|dw:1342236036378:dw| \[\sec \theta = \sqrt{1+ x^2}\] \[\tan \theta = x\] \[\sec^2 \theta d\theta = dx\] \[\int \frac{\sqrt{1+x^2}}{x}dx \implies \frac{\sec \theta(\sec^2 \theta d\theta )}{\tan \theta}\]
anonymous
  • anonymous
I'm sure that \[\int\limits_{}^{} \sec^3x/\tan(x)\]
anonymous
  • anonymous
That turns into 1/cos^2xsinx
lgbasallote
  • lgbasallote
it does?
lgbasallote
  • lgbasallote
i mean yeah it does
anonymous
  • anonymous
I know I can't do u sub.
lgbasallote
  • lgbasallote
there's only one thing you can do...integration by parts
lgbasallote
  • lgbasallote
\[\int \frac{1}{\sin x \cos^2 x}dx \implies \int \csc x \sec^2 x dx\]
anonymous
  • anonymous
But can I integrate that?
lgbasallote
  • lgbasallote
well i was just spitting out ideas....
anonymous
  • anonymous
That's why I didn't change it to that because I knew there was nothing to do there.
lgbasallote
  • lgbasallote
well i know i can make 1 = sin^2 x + cos^2 x
lgbasallote
  • lgbasallote
\[\int \frac{1}{\sin x \cos^2 x}dx \implies \int \frac{ \sin^2 x + \cos^2 x}{\sin x \cos^2 x}dx\]
anonymous
  • anonymous
OH! That's good
lgbasallote
  • lgbasallote
\[\int \frac{\sin^2 x}{\sin x \cos ^2 x}dx + \int \frac{\cos^2 x}{\sin x \cos^2 x}dx\]
lgbasallote
  • lgbasallote
yup saw the answer now :D i'll let you do the good stuff ;)
anonymous
  • anonymous
Ah, yes, yes, I see it too.
lgbasallote
  • lgbasallote
nice! congrats

Looking for something else?

Not the answer you are looking for? Search for more explanations.