anonymous
  • anonymous
\[\mathsf{a,b,c \in \left[0,1\right]}\]\[\mathsf{\text{Prove}\quad\frac{a}{b+c+1} + \frac{b}{a+c+1} + \frac{c}{a+b+1} + \left(1-a\right)\left(1-b\right)\left(1-c\right)\le1}.\]
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
@mukushla @KingGeorge
vishweshshrimali5
  • vishweshshrimali5
\[\mathsf{\text{Prove}\quad\frac{a}{b+c+1} + \frac{b}{a+c+1} + \frac{c}{a+b+1} + \left(1-a\right)\left(1-b\right)\left(1-c\right)\le1}\] Because \[\mathsf{a,b,c \in \left[0,1\right]}\] It can be easily seen that for a,b,c = 0 or 1 the LHS becomes = 1 Now in all other remaining cases i.e. a,b,c belong to (0,1) each of the fraction will lie in (0,1/3) and each of (1-a), (1-b),(1-c) will lie between (0,1) and so (1-a)(1-b)(1-c) will be approx. = 0 and so the whole LHS < 1 I know that it is a very bad proof But it is just a try. Sorry for this bad attempt
vishweshshrimali5
  • vishweshshrimali5
(1-a)(1-b)(1-c) will be approx. = 0 this is because product of any three decimals <1 and > 0 their product will be very close to 0

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

vishweshshrimali5
  • vishweshshrimali5
@Ishaan94 Can this help u a little ............... ?
anonymous
  • anonymous
another solution using calculus
1 Attachment
anonymous
  • anonymous
thank you mukushla. i do like the solution, thanks a lot. and thank you vishwesh i had already thought of the way the you did but wasn't able to generate a concrete solution.
vishweshshrimali5
  • vishweshshrimali5
@mukushla It is really a very nice solution

Looking for something else?

Not the answer you are looking for? Search for more explanations.